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Abstract

We introduce Deep Reasoning Networks (DRNets), an end-to-end framework that
combines deep learning with reasoning for solving complex tasks, typically in
an unsupervised or weakly-supervised setting. DRNets exploit problem structure
and prior knowledge by tightly combining logic and constraint reasoning with
stochastic-gradient-based neural network optimization. We illustrate the power of
DRNets on de-mixing overlapping hand-written Sudokus (Multi-MNIST-Sudoku)
and on a substantially more complex task in scientific discovery that concerns
inferring crystal structures of materials from X-ray diffraction data under thermo-
dynamic rules (Crystal-Structure-Phase-Mapping). At a high level, DRNets encode
a structured latent space of the input data, which is constrained to adhere to prior
knowledge by a reasoning module. The structured latent encoding is used by a
generative decoder to generate the targeted output. Finally, an overall objective
combines responses from the generative decoder (thinking fast) and the reasoning
module (thinking slow), which is optimized using constraint-aware stochastic gra-
dient descent. We show how to encode different tasks as DRNets and demonstrate
DRNets’ effectiveness with detailed experiments: DRNets significantly outperform
the state of the art and experts’ capabilities on Crystal-Structure-Phase-Mapping,
recovering more precise and physically meaningful crystal structures. On Multi-
MNIST-Sudoku, DRNets perfectly recovered the mixed Sudokus’ digits, with 100%
digit accuracy, outperforming the supervised state-of-the-art MNIST de-mixing
models. Finally, as a proof of concept, we also show how DRNets can solve stan-
dard combinatorial problems – 9-by-9 Sudoku puzzles and Boolean satisfiability
problems (SAT), outperforming other specialized deep learning models. DRNets
are general and can be adapted and expanded to tackle other tasks.

1 Introduction

Human thought consists of two different types of processes [Kahneman, 2011]: System 1, a fast,
implicit (automatic), unconscious process, and System 2, a slow, explicit (controlled), conscious
process. Humans use System 1 most of the time. System 1 is fast, effortless, and provides a type of
near-automatic pattern recognition. In contrast, System 2 is slow, rational, requiring more careful
thinking, and is used to solve more complex reasoning problems.
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Figure 1: (a) Two 4x4 Sudokus: The cells in each row, column, and any of the four 2x2 boxes
involving the corner cells have non-repeating digits. (b) Two overlapping Sudokus, with a mixture
of two digits in each cell: one from 1 to 4 and the other from 5 to 8. In Multi-MNIST-Sudoku,
the digits of two overlapping hand written Sudokus (b) have to be de-mixed (as done by DRNet in
(c)). (d) The reconstructed overlapping hand written Sudokus from DRNet. (e) A standard 9-by-9
Sudoku puzzle: a partially filled Soduku has to be completed as a valid Sudoku.

Figure 2: Deep Reasoning Networks (DRNets) perform end-to-end deep reasoning by encoding a
latent space of the input data that captures prior knowledge constraints and is used by a generative
decoder to generate the desired output. (a) Prior knowledge includes prototypes of digits, which
are used to pre-train and build the decoder’s generative module, and Sudoku’s rules, which help
DRNet reason about the overlapping digits. (b) Reasoning modules batch data points involved in the
same constraints (cells in rows, columns, blocks of a Sudoku) together, enforce that the structure of
the latent space satisfies prior knowledge, and dynamically adjust the weights of constraints based
on their satisfiability. (c) The overall objective combines responses from the generative decoder
(thinking fast) and the reasoning modules (thinking slow).

Deep learning has achieved tremendous success in areas such as vision, speech recognition, language
translation, and autonomous driving. Nevertheless, certain limitations of deep learning are generally
recognized, in particular, limitations due to the fact that deep learning approaches heavily depend
on the availability of large amounts of labeled data. In fact, the current state of the art of deep
learning has been compared to System 1, i.e., performing pattern recognition or heuristic evaluation.
So, when it comes to complex problems that involve reasoning (System 2), such as playing Go
or crystal structure phase mapping, pure machine learning approaches have to be complemented
with reasoning algorithms, such as Monte Carlo tree search [Anthony et al., 2017, Silver et al.,
2016, 2018], or mixed-integer programming [Ermon et al., 2015]. Such reasoning approaches are in
general outsourced using external modules, which is not always possible and may result in inferior
performance due to the coordination barrier between neural networks (System 1) and the outsourced
reasoning module (System 2), which is often non-differentiable. Therefore, an efficient scheme is
needed to integrate the two systems in a general and seamless way.

We propose Deep Reasoning Networks (DRNets), an end-to-end framework that combines deep
learning with logical and constraint reasoning for solving complex tasks that require both System 1
and System 2 style thinking, typically in an unsupervised or weakly-supervised setting. We illustrate
the power of DRNets for disentangling two overlapping hand-written Sudokus (Multi-MNIST-
Sudoku) (see Fig.1) and for solving a substantially more complex task in scientific discovery that
concerns inferring crystal structures of materials from X-ray diffraction data, which we refer to as
Crystal-Structure-Phase-Mapping. Both tasks require probabilistic reasoning to interpret noisy
and uncertain data, while satisfying a set of rules: Sudoku rules and thermodynamic rules. For
example, de-mixing hand written digits is challenging, but it becomes more feasible when we
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reason about the prior knowledge concerning the two overlapping Sudokus. Crystal structure phase
mapping is yet substantially more complex. In fact, crystal structure phase mapping easily becomes
too complex for experts to solve and is a major bottleneck in high-throughput materials discovery.
DRNets are motivated and inspired by problems from scientific discovery, such as crystal structure
phase mapping.

Our contributions: (1) We introduce Deep Reasoning Networks (DRNets), an end-to-end unsuper-
vised framework that combines deep learning with logical and constraint reasoning. DRNets perform
end-to-end deep reasoning by encoding a latent space of the input data that captures the structure
and prior knowledge constraints within and among data points (Fig.2). The latent space is used by a
generative decoder to generate the desired output, consistent with the input data and prior knowledge.
DRNets optimize an objective function capturing the overall problem objective as well as prior knowl-
edge in the form of weighted constraints, using (2) Constraint-Aware Stochastic Gradient Descent.
DRNets batch data points involved in the same constraint component together and dynamically adjust
the constraints’ weights as a function of their satisfiability during the optimization phase. (3) We
propose a group of entropy-based continuous relaxations that use probabilistic modelling to
encode general discrete constraints including sparsity, cardinality, so-called All-Different con-
straints, and SAT constraints. De facto, these examples illustrate how to develop “gadgets” to
encode a variety of combinatorial constraints and prior knowledge in DRNets. (4) We show how
to encode Multi-MNIST-Sudoku, standard 9-by-9 Sudoku, SAT, and Crystal-Structure-Phase-
Mapping as DRNets, by properly defining the structure of the latent space, additional reasoning
modules to model the problem constraints (prior knowledge), and the components of the objective
function. (5) We provide detailed experimental results demonstrating the potential of DRNets. In
particular, we show how (5.1) DRNets significantly outperformed the state of the art and human
experts on Crystal-Structure-Phase-Mapping instances, recovering more precise, interpretable,
and physically meaningful crystal structure pattern decompositions. (5.2) On Multi-MNIST-Sudoku
instances, DRNets perfectly recovered the digits in the mixed Sudokus with 100% digit accuracy
and outperformed the supervised state-of-the-art MNIST de-mixing models, including CapsuleNet
[Sabour et al., 2017] and ResNet [He et al., 2016]. (5.3) DRNets also solve standard combinatorial
problems, such as 9-by-9 Sudoku puzzles and 3-SAT [Mitchell et al., 1992], which require hidden
structure reasoning, outperforming the supervised deep-learning state of the art.

While we illustrate the potential of DRNets applied to different variants of Sudoku, 3-SAT problems,
and Crystal-Structure-Phase-Mapping, DRNets are general and can be adapted and expanded to many
other applications. Future research entails developing the corresponding “gadgets” for incorporating
other types of constraints, prior knowledge, and objective functions, for other applications.

2 Related Work

Exploiting problem structure and reasoning about prior knowledge in machine learning tasks has
been of increasing interest to facilitate learning, enhance generalization, and improve interpretability
[Taskar et al., 2004, Ganchev et al., 2010, Ermon et al., 2015, Hu et al., 2016a]. Bayesian machine
learning [Nasrabadi, 2007] imposes prior beliefs by regularizing the posterior with prior distributions.
Ganchev et al. [2010] proposed posterior regularization (PR), which encodes the soft constraints via
a variational distribution. Hu et al. [2016a,b] introduced the PR framework into deep learning for
solving natural language processing tasks. In computer vision, symmetry and bone-length constraints
were introduced for human pose estimation [Zhou et al., 2017, 2016], and linear constraints were
imposed for image segmentation [Pathak et al., 2015]. In structured prediction, Chen et al. [2018]
imposed a multivariate Gaussian distribution to capture the correlation among multiple entities, and
Lee et al. [2017] incorporate constraints at the inference stage via fine-tuning. In reinforcement
learning, Anthony et al. [2017], Silver et al. [2016, 2018] outsource the reasoning process (System 2)
to external Monte Carlo tree search. In representation learning, k-Sparse autoencoder [Makhzani and
Frey, 2013] proposed a k-sparse encoding of the original data. A PCA-like autoencoder [Ladjal et al.,
2019] uses a covariance loss term to encourage the dimensions of the latent space to be statistically
independent. Deep generative models [Goodfellow et al., 2014, Kingma and Welling, 2013, Oord
et al., 2016, Larochelle and Murray, 2011, Hu et al., 2017a] intrinsically impose a prior distribution
into the latent space to reason about the original data distribution, which implicitly exploits the
underlying structure. InfoGan [Chen et al., 2016] uses mutual information loss to compress most
information into an interpretable low-dimensional encoding. Mirza and Osindero [2014], Hu et al.
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Figure 3: The reduction flow of Deep Reasoning Networks.

[2017b] use labeled data to control the sample attributes and disentangle the latent space. Hu et al.
[2018] introduced posterior regularization into deep generative models to learn structured knowledge
from labeled data that improves the quality of generated samples.

Leveraging machine learning to solve combinatorial optimization problems has also received much
attention (see e.g., Bengio et al. [2018] for a recent survey). For examples: Bello et al. [2016]
and Bengio et al. [2018] explored reinforcement learning and Pointer Networks for the traveling
salesman problem. Li et al. [2018] use graph convolutional networks to guide the local search for
solving graph-related NP-complete problems. Selsam et al. [2018], Amizadeh et al. [2019] proposed
NeuroSAT and PDP to tackle SAT problems with specialized neural networks and one-bit supervision.
Wilder et al. [2018] proposed to use continuous relaxation of discrete problems to backpropagate the
gradients, to upstream machine learning models.

While exploiting problem structure and prior knowledge in deep neural networks has received much
attention, previous works primarily focus on supervised settings for data-rich domains, typically
using large amounts of labeled data, which reduces the importance of explicitly reasoning about prior
knowledge given the data’s strong signal. Furthermore, with few exceptions, the constraints proposed
in previous models are often independent, soft, i.e., violating them only leads to a worse solution, and
are mainly used as regularization terms. In contrast, the problems that DRNets aim to solve often
involve many constraints that are hard and correlated: satisfying one constraint while neglecting
others can potentially make them unsatisfiable, and violating any of them directly results in an invalid
solution (e.g., a wrong Sudoku digit could make the whole puzzle unsolvable). Therefore, a tactical
architecture and a smart reasoning module are needed to tackle such challenges. To the best of our
knowledge, DRNets are the first end-to-end unsupervised framework that combines deep learning
with logical and constraint reasoning for solving complex tasks.

3 Deep Reasoning Networks

DRNets (see Fig.2) are inspired by human thinking [Shivhare and Kumar, 2016]: we abstract patterns
to higher-level descriptions and combine them with prior-knowledge to fill-in the gaps. Consider the
Multi-MNIST-Sudoku example (Fig.1): we first guess the digits in each cell based on the patterns; we
re-adjust our initial beliefs and re-image the overlapping patterns by reasoning about Sudoku rules
and comparing them to the original ones, potentially involving several iterations.
Formally, DRNets formulate unsupervised learning as constrained optimization, incorporating
abstractions and reasoning about structure and prior knowledge:

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi) s.t. φθ(xi) ∈ Ωlocal and (φθ(x1), ..., φθ(xN )) ∈ Ωglobal (1)

In this formulation, xi ∈ Rn is the i-th n-dimensional input data point, φθ(·) is the function of the
encoder in DRNets parameterized by θ,G(·) denotes the generative decoder,L(·, ·) is the loss function
(e.g., evaluating the reconstruction of patterns), Ωlocal and Ωglobal are the constrained spaces w.r.t. a
single input data point and several input data points, respectively. G(·) is in general a fixed pre-trained
or parametric model. For example, in Multi-MNIST-Sudoku, G(·) is a pre-trained conditional GAN
[Mirza and Osindero, 2014] using hand-written digits, and for Crystal-Structure-Phase-Mapping,
G(·) is a Gaussian Mixture model. Note that constraints can involve several (potentially all) data
points: e.g., in Sudoku, all digits should form a valid Sudoku and in crystal-structure-phase-mapping,
all data points in a composition graph should form a valid phase diagram. Thus, we specify local and
global constraints in DRNets – local constraints only involve a single input data point whereas global
constraints involve several input data points, and they are optimized using different strategies.

Solving the constrained optimization problem (1) directly is extremely challenging since the objective
function in general involves deep neural networks, which are highly non-linear and non-convex, and
prior knowledge often even involves combinatorial constraints (Fig.3). Therefore, we use Lagrangian
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relaxation to approximate equation (1) with an unconstrained optimization problem, i.e.,

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi) + λlψl(φθ(xi)) +

Ng∑
j=1

λgjψ
g
j ({φθ(xk)|k ∈ Sj}) (2)

N is the number of input data points, Ng denotes the number of global constraints, Sj denotes the set
of indices w.r.t. the data points involved in the j-th global constraint, and ψl, ψgj denote the penalty
functions for local constraints and global constraints, respectively, along with their corresponding
penalty weights λl and λgj . In the following, we propose two mechanisms to tackle the above
unconstrained optimization task (Fig.3).

Continuous Relaxation: Prior knowledge often involves combinatorial constraints with discrete
variables that are difficult to optimize in an end-to-end manner using gradient-based methods.
Therefore, we need to design proper continuous relaxations for discrete constraints to make the
overall objective function differentiable. We propose a group of entropy-based continuous relaxations
to encode general discrete constraints such as sparsity, cardinality, All-Different constraints, and SAT
constraints (see Fig.4). Moreover, our framework can be easily expanded to encode other constraints.

Figure 4: Examples of continuous relaxations: ei,j , Nc, Nl,Kj , λh, Pi denote binary variables, the
number of clauses, the number of literals, the number of literals in the j-th clause, the weights of
entropy terms, and the Bernoulli distribution for the i-th literal. "leaky_relu" is the leaky ReLU.

We construct continuous relaxations based on probabilistic modelling of discrete variables, where we
model a probability distribution over all possible values for each discrete variable. For example, in
Multi-MNIST-Sudoku, a way of encoding the possible two digits in the cell indicated by data point
xi (one from {1...4} and the other from {5...8}), is to use 8 binary variables ei,j ∈ {0, 1}, while
requiring

∑4
j=1 ei,j = 1 and

∑8
j=5 ei,j = 1. In DRNets, we model probability distribution Pi and

Qi over digits 1 to 4 and 5 to 8 respectively: Pi,j ,j=1...4 and Qi,j ,j=1...4 denote the probability of
digit j and the probability of digit j + 4, respectively. We approximate the cardinality constraint of
ei,j by minimizing the entropy of Pi and Qi, which encourages Pi and Qi to collapse to one value.
Another combinatorial constraint in Multi-MNIST-Sudoku is the All-Different constraint, where all
the cells in a constrained set S, i.e., each row, column, and any of four 2x2 boxes involving the corner
cells, must be filled with non-repeating digits. For a probabilistic relaxation of the All-Different
constraint, we analogously define the entropy of the averaged digit distribution for all cells in a
constrained set S, i.e., H(P̄S) :

H(P̄S) = −
4∑
j=1

P̄S,j log P̄S,j = −
4∑
j=1

(
1

|S|
∑
i∈S

Pi,j

)
log

(
1

|S|
∑
i∈S

Pi,j

)
(3)

In this equation, a larger value implies that the digits in the cells of S distribute more uniformly.
Thus, we can analogously approximate All-Different constraints by maximizing H(P̄S) and H(Q̄S).
One can see, by minimizing all H(Pi) and H(Qi) to 0 as well as maximizing all H(P̄S) and H(Q̄S)
to log |S|, we find a valid solution for the two 4x4 Sudoku puzzles, where all Pi,j are either 0 or 1.
Furthermore, we can easily generalize those two relaxations for 9x9 Sudoku puzzles.
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We also propose to relax the k-sparsity constraints, which for example in Crystal-Structure-Phase-
Mapping state the maximum number k of pure phases in an XRD-pattern, by minimizing the entropy
of the phase distribution P below a threshold c < log k. We choose the threshold c < log k because
the entropy of a discrete distribution P with at most k positive values cannot exceed log k.

Finally, we approximate the SAT constraints by relaxing their integer programming encoding, where
we minimize the entropy of literals to enforce their collapse to either 0 or 1, while maximizing the
sum of literals in each clause to encourage one of them to be 1 (true). Moreover, we use "leaky_relu"
[Xu et al., 2015] to discourage increasing the sum in each clause when its larger than 1.

Algorithm 1 Constraint-aware stochastic gradient descent optimization of deep reasoning networks.

Input: (i) Data points {xi}Ni=1. (ii) Constraint graph. (iii) Penalty functions ψl(·) and ψgj (·) for the
local and the global constraints. (iv) Pre-trained or parametric generative decoder G(·).

1: Initialize the penalty weights λl, λgj and thresholds for all constraints.
2: for number of optimization iterations do
3: Batch data points {x1, ...,xm} from the sampled (maximal) connected components.
4: Collect the global penalty functions {ψgj (·)}Mj=1 concerning those data points.
5: Compute the latent space {φθ(x1), ..., φθ(xm)} from the encoder.
6: Adjust the penalty weights λl, λ

g
j and thresholds accordingly.

7: minimize 1
m

(∑m
i=1 L(G(φθ(xi)),xi) + λlψ

l(φθ(xi))
)

+
∑M
j=1 λ

g
jψ

g
j ({φθ(xk)|k ∈ Sj})

using any standard gradient-based optimization method and update the parameters θ.
8: end for

Constraint-Aware Stochastic Gradient Descent: We propose constraint-aware SGD to tackle the
global penalty functions ψgj ({φθ(xk)|k ∈ Sj}), which involve several (potentially all) data points.
We define a constraint graph, an undirected graph in which each data point forms a vertex and
two data points are linked if they are in the same global constraint. Constraint-aware SGD batches
data points from the randomly sampled (maximal) connected components in the constraint graph,
and optimizes the objective function w.r.t. the subset of global constraints concerning those data
points and the associated local constraints. For example, in Multi-MNIST-Sudoku, each overlapping
Sudoku forms a maximal connected component, we batch the data points from several randomly
sampled overlapping Sudokus and optimize the All-Different constraints (global) as well as the
cardinality constraints (local) within them. However, in Crystal-Structure-Phase-Mapping, the
maximal connected component becomes too large to batch together, due to the constraints (phase field
connectivity and Gibbs-alloying rule) concerning all data points in the composition graph. Thus, we
instead only batch a subset (still a connected component) of the maximal connected component – e.g.,
a path in the composition graph, and optimize the objective function that only concerns constraints
within the subset (along the path). By iteratively solving sampled local structures of the "large"
maximal component, we cost-efficiently approximate the entire global constraint. Moreover, for
optimizing the overall objective, constraint-aware SGD dynamically adjusts the thresholds and the
weights of constraints according to their satisfiability, which can involve non-differentiable functions.

For efficiency, DRNets solve all instances together using constraint-aware SGD (see Algorithm 1).

4 Experiments

We illustrate the power of DRNets on two complex tasks and two standard combinatorial problems
– disentangling two overlapping hand-written Sudokus (Multi-MNIST-Sudoku), inferring crystal
structures of materials from X-ray diffraction data (Crystal-Structure-Phase-Mapping), solving
9x9 Sudoku Puzzles, and 3-SAT problems. We use 3-layer-fully-connected networks as our en-
coders for all tasks, but we use different generative decoders for different tasks. Moreover, since
DRNets are an unsupervised framework, we can apply the restart [Gomes et al., 1998] mechanism,
i.e., we can re-run DRNets for unsolved instances.

Multi-MNIST-Sudoku: We generated 160,000 input data points which correspond to 32x32 images
of overlapping digits coming from the test set of MNIST [LeCun et al., 1998] and every 16 data points
form a 4-by-4 overlapping Sudokus. Note, our task is more challenging than CapsuleNet’s [Sabour
et al., 2017], in which they offset the digits by 4 pixels, while we fully overlap them, explaining
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CapsuleNet’s different performance. For Multi-MNIST-Sudoku, the DRNet batches every 16 data
points together to enforce the All-Different constraints among the cells of each Sudoku. We use a
conditional GAN [Mirza and Osindero, 2014] as our generative decoder (denoted as G(·)), which is
trained using the digits in the training set of MNIST. For each cell xi, the decoder encodes a latent
space, which consists of two parts: The first part includes two distribution Pi and Qi (see Fig.5)
concerning the possible digits in the cell, and the second part is the latent encodings zi,1, ..., zi,8 of
each possible digit conditioned on the overlapping digits, which is used by the generative decoder
to generate the corresponding digits G(zi,j). We obtain our estimation of the two digits in the cell
by computing the expected digits over Pi and Qi, i.e.,

∑4
j=1 Pi,jG(zi,j) and

∑4
j=1Qi,jG(zi,j+4),

and reconstruct the original input mixture (see Fig.5). As we described before, we impose the
continuous relaxation of cardinality constraints and All-Different constraints to reason about the
Sudoku structure among cells of the overlapping Sudokus. To demonstrate the power of reasoning,
we compared our unsupervised DRNets with supervised start-of-the-art MNIST de-mixing models –
CapsuleNet [Sabour et al., 2017] and ResNet [He et al., 2016], and a variant of DRNets that removes
the reasoning modules ("DRNets w/o Reasoning"). We evaluate both the percentage of digits that are
correctly de-mixed (digit accuracy) and the percentage of overlapping Sudokus that have all digits
correctly de-mixed (Sudoku accuracy). Empowered by reasoning, DRNets significantly outperformed
CapsuleNet, ResNet, and DRNets without reasoning, perfectly recovered all digits with the restart
mechanism (see Table 1), and additionally reconstructed the mixture with high-quality (see Fig.1).

Figure 5: The latent space of the DRNet for Multi-MNIST-
Sudoku.

Multi-MNIST-Sudoku (10,000 instances)
Accuracy (%) Digit Sudoku Time

DRNets +
Restart 100.00 100.00 2hours

DRNets 99.99 99.92 2hours
DRNets w/o
Reasoning 90.43 20.06 2hours

CapsuleNet 88.46 2.01 2min + 7hrs
ResNet-110 91.44 76.40 5min + 1day

Table 1: Accuracy comparison. We
show "test time + training time" for
supervised baselines and "solving
time" for unsupervised DRNets.

Figure 6: The latent space of the DRNet for Crystal-Structure-Phase-Mapping. M denotes the
number of possible phases. (For Al-Li-Fe, M = 159; For Bi-Cu-V, M = 100.)

Crystal-Structure-Phase-Mapping concerns inferring crystal structures from a set of X-ray diffrac-
tion measurements (XRDs) of a given chemical system, given a variety of thermodynamic constraints.
Crystal structure phase mapping is a very challenging task: Each X-ray measurement may involve
several mixed crystal structures; each chemical system includes hundreds of possible crystal struc-
tures; for each crystal structure pattern, we only have a theoretical (idealized) model of pure crystal
phases; the rules of thermodynamics are also complex; and the crystal patterns are difficult for human
experts to interpret, much more complex than identifying digits. In fact, the current state of the art of
crystal structure phase mapping is a major bottleneck in high-throughput materials discovery.

Herein, we illustrate DRNet for crystal structure phase mapping for two chemical systems: (1) a
ternary Al-Li-Fe oxide system [Le Bras et al., 2014], which is theoretically based, synthetically
generated, with ground truth solutions, and (2) a ternary Bi-Cu-V oxide system, which is a more
challenging real system obtained from chemical experiments and is more noisy and uncertain. For
each system, each input data point is the XRD of a mixture of crystal structures. Additionally, the
input includes the composition graph specifying elemental compositions and the constraint graph
of the data points. We also collected a library of possible crystal structures from the International
Centre for Diffraction Data (ICDD) database. Each crystal structure (also named phase) is given
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as a list of diffraction peak location-amplitude pairs, (referred to as stick pattern), representing the
ideal phase patterns measured in a perfect condition (see Fig.6). To model more realistic conditions,
DRNets simulate the real phase patterns from stick patterns using Gaussian mixture models, where
the relative peak locations and mixture coefficients are given by the stick locations and amplitudes.
Moreover, the peak width, peak location shift, and peak amplitude variance are parameterized by the
latent encoding zi,j and used by the generative decoder to generate the corresponding possible phase
patterns in the reconstructed XRD measurement.

We compared DRNets with the state-of-the-art model (IAFD) [Bai et al., 2017], which uses non-
negative matrix factorization (NMF), interacting with external mixed-integer programming modules
to enforce prior knowledge. For the Al-Li-Fe oxide system, though IAFD enforced thermodynamic
rules, the gap between the external optimizer and NMF resulted in a solution that is far from the
ground truth (see Fig.7). In contrast, DRNet almost exactly recovered the ground truth solution by
seamlessly integrating pattern recognition, reasoning, and prior knowledge, including the novelty
of explicitly incorporating the stick pattern information. DRNets solved the Bi-Cu-V oxide system,
producing valid crystal structures and significantly outperforming IAFD w.r.t. reconstruction error.
In addition, none of the IAFD phases matched the ICDD stick patterns, indicating that the Bi-Cu-V
oxide system is beyond IAFD’s capabilities. Materials science experts thoroughly checked DRNet’s
Bi-Cu-V-O solution, and approved it. They were particularly excited about the results given that the
phase map for the Bi-Cu-V-O system was previously unknown, despite their considerable efforts.

Figure 7: Comparison of phase concentration in Al-Li-Fe oxide
system estimated by IAFD and DRNets. Each dot represents an
XRD measurement whose size is proportional to the estimated
phase concentration. DRNet’s phase patterns closely match the
ground truth in contrast to IAFD’s (see e.g., phase 6, right panel).

Al-Li-Fe L1 loss L2 loss
DRNets 0.039 < 0.001
IAFD 8.549 1.125

Bi-Cu-V L1 loss L2 loss
DRNets 3.993 0.196
IAFD 10.580 0.992

Table 2: DRNets outperform
IAFD both on L1 and L2. Num.
of XRDs: Al-Li-Fe 231; Bi-Cu-
V 353; Num. of stick patterns:
Al-Li-Fe 159; Bi-Cu-V 100.

Combinatorial Problems: As a proof of concept of how DRNets can encode standard combinatorial
problems, we solve 9-by-9 Sudoku puzzles and Boolean satisfiability problems (SAT), using a 3-layer-
fully-connected network as our encoder and the reasoning modules. We generated 10,000 9-by-9
Sudoku puzzles with 24 to 32 clues [Gordon Royle, 2014] (e.g., see Fig.1) and 10,000 satisfiable
random 3-SAT instances with the hardest ratio (#clauses/#literals = 4.3) [Mitchell et al., 1992]. We
compared DRNets with the supervised deep learning state of the art: Recurrent Relational Networks
(RRNets) Palm et al. [2017], NeuroSAT Selsam et al. [2018] (SAT) and PDP [Amizadeh et al., 2019]
(SAT). DRNets, without supervision, outperformed all supervised deep learning models (see Table 3).

Instances (10,000) DRNets DRNets + Restart NeuralSAT PDP RRNets
3-SAT n=30 m=129 81.0% (4min) 99.0% (33min) 45.5% (2min+1hr) 78.9% (5min+2hr) NA
3-SAT n=50 m=215 63.3% (7min) 94.0% (47min) 26.1% (3min+1hr) 62.2% (8min+2hr) NA
3-SAT n=100 m=430 34.7% (17min) 77.9% (2hr) 4.7% (5min+1hr) 31.4% (2hr+2hr) NA

9x9 Sudoku 99.5% (1hr) 99.8% (1hr) NA NA 99.6% (1min + 1day)
Table 3: Percentage of instances solved for 3-SAT (hardest ratio m/n = 4.3) and standard 9x9
Sudoku (24 to 32 known cells). We show the "test time + training time" for supervised baselines and
the "solving time" for our unsupervised DRNets. n,m denote the number of literals and clauses. NA,
not applicable. DRNets, without supervision, outperform the supervised state of the art.

Finally, we stress that our main goal is to tackle problems that combine deep learning and reasoning,
such as de-mixing Sudokus or crystal structure phase mapping, as opposed to competing with pure,
highly specialized state-of-the-art SAT solvers that can solve larger 3-SAT instances than the ones
reported here. Nevertheless, our results show that DRNets can encode a broad range of combinatorial
constraints and prior knowledge and effectively combine deep learning with reasoning.

See supplementary materials for further details on DRNets’ model and experimental results.
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5 Conclusions and future work

We propose DRNets, a powerful end-to-end framework that combines deep learning with logical
and constraint reasoning for solving complex tasks. DRNets outperform the state of the art for de-
mixing MNIST Sudokus and crystal-structure phase mapping, solving previously unsolved systems
substantially beyond the reach of other methods and materials science experts’ capabilities. DRNets
also outperform the deep-learning state of the art for solving standard Sudokus and 3-SAT. While
we illustrate the potential of DRNets with unsupervised settings, it is straightforward to impose
supervision into DRNets. Future research includes exploring DRNets for incorporating other types of
constraints, prior knowledge, and objective functions, for other applications.
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